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Elementary derivation of Spitzer’s asymptotic law for Brownian windings
and some of its physical applications
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A simple derivation of Spitzer’s asymptotic law for Brownian windings@Trans. Am. Math. Soc.87, 187
~1958!# is presented along with its generalizations. These include the cases of planar Brownian walks inter-
acting with a single puncture and Brownian walks on a single truncated cone with variable conical angle
interacting with the truncated conical tip. Such situations are typical in the theories of quantum Hall effect and
211 quantum gravity, respectively. They also have some applications in polymer physics. Extension of these
results to the multiple punctured case is also briefly discussed. It is technically associated with some results
known in the context of string and conformal field theories and theories of quantum chaos.
@S1063-651X~98!50911-7#
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In 1958, based on earlier work by Levy@1#, Spitzer@2#
had obtained the asymptotic probability distributionP(x) for
the winding angleu for the planar Brownian motion. If
z(t)5x(t)1 iy(t) is a two-dimensional Wiener process, th
it is of interest to study distributions ofuz(t)u and argz(t)
5u(t). For large times t, Spitzer obtained his famou
Cauchy-type distribution foru(t) given by

PS x5
2u

ln t Ddx5
1

p

1

11x2 dx. ~1!

Equation~1! is obtained under the assumption that the r
dom walker begins his travel at some pointz0 in the z plane
other than the origin, i.e.,x5y50. Then, the angleu is
measured with respect to the line that joinsz0 with the ori-
gin. This problem is of interest in polymer physics@3–5#,
since it represents the benchmark problem for the stud
entanglements. In mathematical literature the same phen
enon is described in terms of recurrence and transience.
example, it is well known@6# that one- and two-dimensiona
Brownian motions are recurrent~that is, the random walk
visits time and again its starting point!, while three-
dimensional motion is transient~that is, there is a nonzer
probability that the walker will not return to the origin!. For
the random walk on a once-puncturedz plane, Lyons and
McKean @7# had demonstrated that the walk is recurre
while for the twice-punctured plane the walk is transient.
the language of polymers this means that the polymer ly
in the z plane will not be entangled with another polyme
placed perpendicular to this plane, while it will become e
tangled if there are at least two polymers that intersect thz
plane at two distinct points. The planarity of the above pro
lem is actually not too essential, as was explained in Ref.@5#.
In the case of quantum mechanics the once-punctured p
problem is directly associated with the Aharonov-Boh
~AB! effect @8#. The AB effect in the presence of two pun
tures was studied in Ref.@9#. The methods of Ref.@9# cannot
be generalized to the case of more than two punctures an

*Electronic address: string@mail.clemson.edu
PRE 581063-651X/98/58~5!/5213~4!/$15.00
-

of
m-
or

t

g

-

-

ne

do

not provide any information about the recurrence and
transience. At the same time, the methods used by McK
and Lyons@7# can be used for the case of more than tw
punctures but are not widely known in physics literatu
They had been recently mentioned in Ref.@5# in connection
with some topological problems arising in polymer physic
In physics literature random walks on a multiply punctur
plane were extensively studied in connection with proble
related to the quantum Hall effect~QHE! and anyonic super-
conductivity@8,10#, while in mathematics literature the sam
problem was recently extensively studied by Pitman and Y
@11,12#. To our knowledge, no attempt had been made
establish connections between these two formalisms~see
also Ref.@7#!. In this Rapid Communication we would like
to make the first step towards this comprehensive goal.

Let us begin with the well-known expression for the d
tribution function for the planar random walk given by

G~r1 ,r2 ;t !5
1

2pt
expS 2

~r12r2!2

2t D , ~2!

wherer1(r2)5$x1(x2),y1(y2)%. With respect to the origin in
the z plane the polar system of coordinates can be used
this system of coordinates Eq.~2! can be rewritten as

G~r 1 ,r 2 ,Du;t !5
1

2pt
expH 2

r 1
21r 2

2

2t J (
m52`

`

eimDuI m~z!,

~3!

where Du5u12u2 , z52r 1r 2 /t and I m(z)5I 2m(z) is the
modified Bessel function. The above distribution functi
can be used for study of either the radial or the angu
distributions or both. Suppose, we are interested in the an
lar distribution function only@in view of Eq. ~1!#. Then, us-
ing Eq. ~3!, it is convenient to introduce the normalized di
tribution function defined according to the followin
prescription:
R5213 © 1998 The American Physical Society
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f ~z,Du!5
G~r 1 ,r 2 ,Du;t !

G~r 1 ,r 2,0;t !
5

1

I 0~z! (
m52`

`

eimDuI umu~z!.

~4!

The Fourier transform of such defined distribution functi
can now be obtained in a standard way as

f ~z,a!5E
2`

`

dDue2 iaDu f ~z,Du!5
I uau~z!

I 0~z!
. ~5!

Let us now chooser 25 r̂At1r 1 . This choice is motivated by
known scaling properties of Brownian motion@13#. Then, for
large t, one obtainsz.2r 1r̂ /At. For fixed r̂ and r 1 and t
→` one surely expectsz→0. This observation allows us t
use a known asymptotic expansion forI uau(z) for small z’s
with the result forf (z,a) ~valid for smallz’s or larget’s!:

f ~z,a!'expS 2
uau
2

ln t D . ~6!

The inverse Fourier transform of Eq.~6! leads us to the resul
given by Eq.~1!, i.e., f (z,Du)5P(x), wherex52Du/ ln t.

Thus the obtained result can be easily generalized n
For example, instead of considering random walks on the
once-punctured plane we can consider the same problem
the surface of a cone. This type of problem is of interes
connection with the study of 211 quantum gravity@14,15#.
It is also known@15,16# that the above conical problem
equivalent to the planar random walk problem in the wed
~the conical angle is simply related to that of the wedge!. In
the most general case our walk may be allowed to inte
with the edges of the wedge@2# or, in the case of the wedg
angle equal to 2p, with the puncture located at the origin
The analog of the distribution function, Eq.~3!, is known to
be @16,17#

G~r 1 ,r 2 ,Du;t !5
1

bt
expS 2

r 1
21r 2

2

2t D
3 (

m52`

`

ei2p~m1d!Du/bI ~2p/b!um1du~z!.

~7!

For b52p andd50 Eq. ~7! reduces to Eq.~3! as required.
The wedge angleb lies between 0 and 2p while the
statistics-changing parameterd is responsible for the poly
mer puncture interactions, as is explained in Refs.@5,18#, or
for the interaction with the flux tube if the magnetic langua
is being used@8#.

By analogy with Eq.~4!, we obtain

f b
d ~z,Du!5

1

I ~2p/b!udu~z! (
m52`

`

ei2pm~Du/b!I ~2p/b!um1du~z!.

~8!

Upon Fourier transforming this expression we obtain

f b
d ~z,a!5

I ua1~2p/b!du~z!

I ~2p/b!udu~z!
. ~9!
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Repeating the same chain of arguments that had led us to
~6!, we obtain now

f b
d ~z,a!.expF2

1

2 S Ua1
2p

b
dU2 2p

b
udu D ln t G . ~10!

To perform the inverse Fourier transform of Eq.~10! is non-
trivial. Indeed, we have

f b
d ~Du,t !5

1

2p E
2`

`

da expH iaDu2
1

2 FAa21S 2p

b
d D 2

2
2p

b
uduG ln tJ . ~11!

The integrals of this type are known in the context of qua
tum field theory@19# and had also been used recently
polymer physics problems@20#. By introducing new variable
a5u2pd/businhw into Eq. ~11! it is transformed into

f b
d ~Du,t !5

d

b
expH p

b
udu ln tJ E

2`

`

dw coshw

3expS 2
1

2
~coshw!

2p

b
udu ln t

1 iDu
2p

b
udusinh w D . ~12!

The exponent inside the integral in Eq.~12! can be trans-
formed as follows:

2
1

2
~coshw!

2p

b
udu ln t1 iDu

2p

b
udusinh w

52Aa21v2 cosh~w1w0!,

where a5(p/b)udu ln t and v5Du(2p/b)udu so that
coshw05a/Aa21v2 and sinhw052iv/Aa21v2. The use of
these results in Eq.~12! allows us to rewrite it in the equiva
lent form,

f b
d ~Du,t !5

d~2p/b!udu ln t

bAa21v2
expS p

b
udu ln t D E

0

`

dw coshw

3exp~2Aa21v2 coshw!

[Fb
d ~ t !K1~Aa21v2!, ~13!

where K1(x) is the modified Bessel function with know
asymptotic expansions:K1(x).1/x for x→0, and K1(x)
.Ap/2xe2x for x→`. Using these expansions, the follow
ing asymptotic results for the distribution functionf b

d (Du,t)
are obtained.

~i! d→0 and b is fixed and nonzero. In this case w
recover Spitzer’s law, Eq.~1!, as required.

~ii ! d→` but Du is finite. Then we obtain (x
52Du/ ln t),

f b
d ~x!dx.

1

2
A d

2b
ln t

dx

~11x2!3/4 expS 2Ub ln t

8pd Ux2D .

~14!
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The result obtained is in complete accord~up to numerical
prefactors! with that obtained in Ref.@21# using methods of
conformal field theory and, more recently, in Ref.@22#, by
direct numerical simulations.

~iii ! d andb are finite butDu→` andDu@ ln t. Then we
obtain

f b
d ~x!dx.

1

2
A d

2b
ln t expS Upd

b U ln t D
3expS 2uxuUpd

b U ln t D dx

uxu3/2. ~15!

This result is in formal agreement with that obtained by Ru
nick and Hu@4# and Desbois@23#. In Ref. @4# only the lead-
ing exponential factor was obtained, while the result, E
~15!, differs from that obtained in Ref.@23# by an extra time-
dependent factor. No connections with conical singularit
or QHE problems were made in either Ref.@4# or Ref. @23#.

With the results just obtained, we are ready now to ma
connections with works of Ito and McKean@24# and Lyons
and McKean@7# ~see also Ref.@25#!. We begin by stating the
result proved by Levy@1# and refined by others@13#. Let z(t)
be some planar Brownian motion which started, say, az
50 ~at t50!. Then, the motion associated withz is obtained
with the help of some analytic functionf (z) is also Brown-
ian. This is equivalent to saying that the planar Brown
motion is conformally invariant. Let us illustrate this fact
the example of once-punctured planeR220.

The diffusion equation~in dimensionless units! on R2

20 can be written in a usual form as

] f

]t
5

1

4 S ]2

]x2 1
]2

]y2D f , ~16!

where the factor 1/4 is chosen for convenience. It is usefu
rewrite Eq.~16! in terms of complex variables. Simple ca
culation produces

] f

]t
5

]2f

]z] z̄
. ~17!

Since this equation is not defined forz5 z̄50, we introduce
new complex variablew through z5expw. Unlike z, our
new variablew5u1 iv is defined for the entire complexw
plane. In terms of thew variable Eq.~17! can be rewritten as

] f

]t
5

1

2
e22uS ]2

]u2 1
]2

]v2D f . ~18!

The equation obtained describes Brownian motion on a s
ply connected covering spaceM̃ , which is a Riemann sur
face for the logarithmic function. The result just obtain
coincides with that discussed in the book by Ito and Mc
ean; e.g. see Ref.@24#. Ito and McKean argue~without ex-
plicit demonstration! that, based on the results of Levy, th
diffusion equation~18! can be converted into standard for
given by Eq.~16! by replacing Brownian timet by another
-

.

s

e

n

to

-

-

~actually random! time T which is properly chosen. Let u
demonstrate how this can actually be done. To this purp
let us consider the Langevin-type equation written in t
form of Ito,

dx~s!5a„x~s!…ds1s„x~s!…dw~s!. ~19!

The corresponding backward Kolmogorov-Fokker-Plan
equation can be written now as

]

]s0
P~x,sux0 ,s0!52a

]

]x0
P1

1

2
s2

]2

]x0
2 P. ~20!

Introduce ‘‘new’’ time T(s) according to equation

s5E
0

T~s!

dtg„x~ t !…. ~21!

Therefore,ds5g„x(T)…dT. Substitution of this result into
Eq. ~19! and use of Ito stochastic calculus@13# produces

dx~T!5a„x~T!…g„x~T!…dT1Ag„x~T!…s„x~T!…dw~T!.

~22!

A new diffusion coefficient can be selected now@in view of
Eqs.~19!,~20!# as

Dnew5
1

2
gs2. ~23!

Looking at Eq.~18!,~21! and selecting

s5E
0

T~s!

dt e2u~ t ! ~24!

produces, in view of Eq.~23!, Dnew51/2. Equation~24! is in
complete agreement with the result of Ito and McKean@24#,
where it was presented without derivation. Surely,T(s) is
random time so that solution of Eq.~16! will depend upon
random time. This is somewhat inconvenient. To correct t
inconvenience it is useful to think about calculable obse
ables. In view of Eq.~5!, we are interested in the Fourie
transformed angular distribution functionf (z,a). It can be
shown@24# that this task is equivalent to finding averages
the type

f ~z,a!5^eiaDu&5K expS 2
a2

2 E
0

T

dtg@x~t!# D L , ~25!

where^ & denotes the averaging with the help of a Gaussi
like propagator for the free ‘‘particle.’’ Equation~25! is a
special case of the famous Feynman-Kac formula@26#. The
transition from first to second average in Eq.~25! is associ-
ated with the Cameron-Martin-Girsanov-type formula f
changes of variables inside of path integrals@13,27#. Equa-
tion ~25! is associated with the Schro¨dinger-like differential
equation. In view of Eqs.~21! and ~24!, it can be easily
demonstrated, using standard methods of quantum mec
ics @28#, that such an obtained Schro¨dinger-like equation is
just that for the modified Bessel functions, e.g.,I m(x), etc.
Its solution, indeed, leads us to Eq.~5!.
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Based on these results, immediate generalizations are
sible. For instance if we were looking for the distributio
function f (z,a) for a twice-punctured plane, we would nee
the uniformizing function which will help us to write th
diffusion equation on the simply connected universal cov

ing surfaceM̃ . This surface is known to be the Rieman
surface for the punctured torus@25#. Classical motion on
such a surface is chaotic and quantum description of s
motion was considered in Ref.@29#, where no attempts wer
made to relate it to Spitzer’s results. Already for two pun
tures study of transience and recurrence is highly nontri
@7,25#. For two or more punctures the task of finding t
ie

sic

ity
os-

r-

ch

-
l

uniformizing function can be reduced to that of finding a
solutions of the corresponding Fuchsian-type equations@30#,
which are identical in the form to that known in string an
conformal field theories for the correlation functions@31#. It
remains a challenging problem to extend Spitzer-like res
to multiply connected surfaces, to connect these results w
those of Pitman and Yor@11,12# and with those known in the
theories of QHE@8,10#.

Note added in proof. Recently, two additional reference
came to our attention. In Ref.@32# the reader can find more
up-to-date~as compared to Pitman and Yor’s! references on
Brownian windings, while Ref.@33# containing detailed ap-
plications of the above ideas to QHE.
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