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Elementary derivation of Spitzer's asymptotic law for Brownian windings
and some of its physical applications
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A simple derivation of Spitzer's asymptotic law for Brownian windirfdsans. Am. Math. Soc87, 187
(1958] is presented along with its generalizations. These include the cases of planar Brownian walks inter-
acting with a single puncture and Brownian walks on a single truncated cone with variable conical angle
interacting with the truncated conical tip. Such situations are typical in the theories of quantum Hall effect and
2+ 1 quantum gravity, respectively. They also have some applications in polymer physics. Extension of these
results to the multiple punctured case is also briefly discussed. It is technically associated with some results
known in the context of string and conformal field theories and theories of quantum chaos.
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In 1958, based on earlier work by Ley{], Spitzer[2] not provide any information about the recurrence and/or
had obtained the asymptotic probability distributi®(x) for  transience. At the same time, the methods used by McKean
the winding angled for the planar Brownian motion. If and Lyons[7] can be used for the case of more than two
z(t)=x(t)+iy(t) is a two-dimensional Wiener process, then punctures but are not widely known in physics literature.
it is of interest to study distributions di(t)| and argz(t)  They had been recently mentioned in R&f in connection
=¢(t). For large timest, Spitzer obtained his famous with some topological problems arising in polymer physics.

Cauchy-type distribution fo#(t) given by In physics literature random walks on a multiply punctured
plane were extensively studied in connection with problems
bl x— ﬁ)dxz 11 dx 0 related to the quantum Hall effe(@@HE) and anyonic super-
Int T l+x? conductivity[8,10], while in mathematics literature the same

problem was recently extensively studied by Pitman and Yor
Equation(1) is obtained under the assumption that the ran{11,12. To our knowledge, no attempt had been made to
dom walker begins his travel at some paigtin thez plane  establish connections between these two formaligses
other than the origin, i.ex=y=0. Then, the anglg is  also Ref.[7]). In this Rapid Communication we would like
measured with respect to the line that joigswith the ori-  to make the first step towards this comprehensive goal.
gin. This problem is of interest in polymer physig3-5], Let us begin with the well-known expression for the dis-
since it represents the benchmark problem for the study afibution function for the planar random walk given by
entanglements. In mathematical literature the same phenom-
enon is described in terms of recurrence and transience. For
example, it is well knowri6] that one- and two-dimensional ) (ri—rp)?
Brownian motions are recurrefithat is, the random walk G(ri.rait)= oAt R T T '
visits time and again its starting pojntwhile three-
dimensional motion is transierthat is, there is a nonzero
probability that the walker will not return to the originFor ~ wherer1(r,) ={x1(x2),y1(y2)}. With respect to the origin in
the random walk on a once-puncturedlane, Lyons and the z plane the polar system of coordinates can be used. In
McKean [7] had demonstrated that the walk is recurrentthis system of coordinates E(2) can be rewritten as
while for the twice-punctured plane the walk is transient. In
the language of polymers this means that the polymer lying
in the z plane will not be entangled with another polymer, r§+r§ - imA @
placed perpendicular to this plane, while it will become en- C(F1:f2,A0,0)=>—exp — — m;_x e 1 n(2),
tangled if there are at least two polymers that intersectzthe 3
plane at two distinct points. The planarity of the above prob-
lem is actually not too essential, as was explained in F5éf.
In the case of qguantum mechanics the once-punctured planehere A = 60,—6,, z=2rr,/t and|(2)=1_,(2) is the
problem is directly associated with the Aharonov-Bohmmodified Bessel function. The above distribution function
(AB) effect[8]. The AB effect in the presence of two punc- can be used for study of either the radial or the angular
tures was studied in Rdf9]. The methods of Ref9] cannot  distributions or both. Suppose, we are interested in the angu-
be generalized to the case of more than two punctures and dar distribution function onhyfin view of Eq.(1)]. Then, us-
ing EqQ.(3), it is convenient to introduce the normalized dis-
tribution function defined according to the following
*Electronic address: string@mail.clemson.edu prescription:
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. Gry,rp, A6 1 msoy I?Gepeatingtthe same chain of arguments that had led us to Eq.
(z,A0)= G ,00 g2 w2, & im (z (6), we obtain now
(@ s 1 2w | 2m
fa(z,a)=ex 3 a+— 8|——14]|Int|. (10
The Fourier transform of such defined distribution function B B
can now be obtained in a standard way as To perform the inverse Fourier transform of Ef0) is non-
(2 trivial. Indeed, we have
f(z, —J dA ge 1*A%(z,A 0 5
e a0 dn ® fﬁA00=iLdeaexiaA6—l NNk
p=m 27 ) o 2 B
Let us now choose,=f \t+r;. This choice is motivated by
known scaling properties of Brownian motiph3]. Then, for 2@ |
large t, one obtainsz=2r,f/\t. For fixedf andr, andt B |8l |int. (12)

—o0 one surely expectsg— 0. This observation allows us to
use a known asymptotic expansion fog(z) for small zs The ir_1tegrals of this type are known in the context of quan-
with the result forf(z,«) (valid for smallZs or larget's): tum field theory[19] and had also been used recently in
polymer physics probleni®0]. By introducing new variable
|| a=|2m6lB|sinhg into Eqg. (11) it is transformed into
f(z,a)%exp<—7lnt . (6)

) T %
, , ff;(AG,t)=—exp<—|5|ln t]f de coshg
The inverse Fourier transform of E@) leads us to the result B B —o

given by Eq.(1), i.e., f(z,A0)=P(x), wherex=2A6/Int. 1 5

Thus the obtained result can be easily generalized now. xexp( — = (coshe) e |8]In t
For example, instead of considering random walks on the flat
once-punctured plane we can consider the same problem on o
the surface of a cone. This type of problem is of interest in +iA 6 — | 8|sinh <p>. 12
connection with the study of 21 quantum gravity14,15.
It is also known[15,1€ that the above conical problem is
equivalent to the planar random walk problem in the wedg
(the conical angle is simply related to that of the wedde

The exponent inside the integral in E{.2) can be trans-
Yormed as follows:

the most general case our walk may be allowed to interact 1 o om

with the edges of the wedd@] or, in the case of the wedge 3 (cosho) 5 [S|Int+iAo 5 | 8|sinh ¢
angle equal to 2, with the puncture located at the origin.

Th? analﬂog of the distribution function, E), is known to = —JaZ+ w? cosi e+ @),

be[16,1

where a=(m/B)|d|Int and w=A68(2w/B)|8| so that
coshgy=a/\/a?+ w? and sinhpy=—iw/\/a’+ w?. The use of

1 1+r2
G(rq,r;,A6;t)=—ex

Bt 2t these results in Eq12) allows us to rewrite it in the equiva-
. lent form,
i2m Aol
Xm;x gi2m(m+4) 0/3I(217/,8)\m+5|(2). F2(A0.0= 8(2mIB)|8|In t ;{ 15ll t)f q h
, —_— n cos
(7) A B\/a +w B ? ®

2 2
For B=2 and 5=0 Eq.(7) reduces to Eq(3) as required. X exp( = ya'+ w” coshe)
The wedge angleg lies between 0 and 2 while the E(I)Z(t)Kl(\/m), (13)
statistics-changing parametéris responsible for the poly-
mer puncture interactions, as is explained in RESsl8], or  where K,(x) is the modified Bessel function with known
for the interaction with the flux tube if the magnetic languageasymptotic expansionsK;(x)=1/x for x—0, and K;(x)

is being used8]. _ = \m/2xe”* for x—. Using these expansions, the follow-
By analogy with Eq(4), we obtain ing asymptotic results for the distribution functib(A 6,t)
1 - are obtained.
) _ i27rm(A 6/ B) (i) 6—0 and B is fixed and nonzero. In this case we
fa(z.A0) | 2m1)]5(2) mE2os € ! 2mip)me+21(2)- recover Spitzer's law, Eq1), as required.
(8) (i) 60— but A@ is finite. Then we obtain X
=2A6/In),
Upon Fourier transforming this expression we obtain
£300d 1 /5| dx ,8Int|2
ot 2m1p)5(2) pX)dx= 3 28 Nt &R T g, 5"

) _
e = (@ © (14)
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The result obtained is in complete accdrg to numerical (actually randomtime T which is properly chosen. Let us
prefactor$ with that obtained in Refl21] using methods of demonstrate how this can actually be done. To this purpose,
conformal field theory and, more recently, in REZ2], by  let us consider the Langevin-type equation written in the

direct numerical simulations. form of lto,
(i) § and B are finite butA 6—o andA 6>Int. Then we
obtain dx(s)=a(x(s))ds+ o(x(s))dw(s). (19
1 5 s The corresponding backward Kolmogorov-Fokker-Planck
8 =~ .2 i equation can be written now as
f(x)dx 5 25 Int exp{ 3 In t)
s X ‘b | = &P+12a2P 20
xex;{ —|X| ? In t) Wﬁ (15 0Sg (X,81X0,80) =~ dXg 2 7 z9Xg - (20

_ o . _ Introduce “new” time T(s) according to equation
This result is in formal agreement with that obtained by Rud-

nick and Hu[4] and Desboi$23]. In Ref.[4] only the lead- T(s)
ing exponential factor was obtained, while the result, Eq. 5= fo dtg(x(t)). (21)
(15), differs from that obtained in Ref23] by an extra time-

dependent factor. No connections: with conical Singmamiesrherefore,ds:g(x(T))dT_ Substitution of this result into
or QHE problems were made in either Ref] or Ref.[23].  £q (19) and use of Ito stochastic calcul[&3] produces
With the results just obtained, we are ready now to make

connections with works of Ito and McKed24] and Lyons — /
and McKear{7] (see also Ref.25]). We begin by stating the XM =a(MGEMNATH VGX(T) (x(T)AW(T).
result proved by Levy1] and refined by othefd 3]. Let z(t) (22)
be some planar Brownian motion which started, sayz at A new diffusion coefficient can be selected nfw view of
=0 (att=0). Then, the motion associated witlis obtained Eqgs.(19),(20)] as
with the help of some analytic functioi{z) is also Brown-
ian. This is equivalent to saying that the planar Brownian 1,
motion is conformally invariant. Let us illustrate this fact in D“eWZE go-. (23
the example of once-punctured plaRé— 0.

The diffusion equation(in dimensionless uniison R? Looking at Eq.(18),(21) and selecting
—0 can be written in a usual form as

T(s)
s=f dt e?u® (24)

? & 0

—_— + JR—
x> gy’

o 1
a4

f, (16)

produces, in view of Eq.23), D= 1/2. Equation24) is in
complete agreement with the result of Ito and McKg24,
Qhere it was presented without derivation. Surdlys) is
random time so that solution of E¢L6) will depend upon
random time. This is somewhat inconvenient. To correct this
) inconvenience it is useful to think about calculable observ-
(7_f: o°f 17) ables. In view of Eq(5), we are interested in the Fourier-
ot 9zdz" transformed angular distribution functidi{z,«). It can be
shown[24] that this task is equivalent to finding averages of

Since this equation is not defined fo=z=0, we introduce the type
new complex variablev through z=expw. Unlike z, our

2
new variablew=u+iv is defined for the entire complex f(z a)=<e‘““>: oxtd — a” JTdrg[x(r)] 25
plane. In terms of thev variable Eq.(17) can be rewritten as ' 2 Jo ’

where the factor 1/4 is chosen for convenience. It is useful t
rewrite Eq.(16) in terms of complex variables. Simple cal-
culation produces

o 1

, 2P ) where( ) denotes the averaging with the help of a Gaussian-
—=-e f
a2

W‘F 702 (19 like propagator for the free “particle.” Equatiof25) is a

special case of the famous Feynman-Kac formj@g|. The
transition from first to second average in Eg5) is associ-
The equation obtained describes Brownian motion on a simated with the Cameron-Martin-Girsanov-type formula for
ply connected covering spad#, which is a Riemann sur- changes of variables inside of path integrdl8,27. Equa-
face for the logarithmic function. The result just obtainedtion (25) is associated with the Schiimger-like differential
coincides with that discussed in the book by Ito and McK-equation. In view of Eqs(21) and (24), it can be easily
ean; e.g. see Ref24]. Ito and McKean arguéwithout ex-  demonstrated, using standard methods of quantum mechan-
plicit demonstration that, based on the results of Levy, the ics [28], that such an obtained Schiinger-like equation is
diffusion equation(18) can be converted into standard form just that for the modified Bessel functions, elg,(x), etc.
given by Eq.(16) by replacing Brownian timé by another Its solution, indeed, leads us to E®).
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Based on these results, immediate generalizations are posniformizing function can be reduced to that of finding all
sible. For instance if we were looking for the distribution solutions of the corresponding Fuchsian-type equati8ak
function f(z,) for a twice-punctured plane, we would need which are identical in the form to that known in string and

the uniformizing function which will help us to write the conformal field theories for the correlation functigi®]. It
diffusion equation on the simply connected universal cover/émains a challenging problem to extend Spitzer-like results
) ~ . . . to multiply connected surfaces, to connect these results with
ing surfaceM. This surface is known to be the Riemann ihse of Pitman and Ydt1,17 and with those known in the
surface for the punctured toryg5]. Classical motion on theories of QHES,10.

such a surface is chaotic and quantum description of such Note added in proofRecently, two additional references
motion was considered in R4R9], where no attempts were came to our attention. In Reff32] the reader can find more
made to relate it to Spitzer’s results. Already for two punc-up-to-date(as compared to Pitman and Yorieferences on
tures study of transience and recurrence is highly nontriviaBrownian windings, while Ref{33] containing detailed ap-
[7,25]. For two or more punctures the task of finding the plications of the above ideas to QHE.
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